556 research outputs found

    The English are healthier than the Americans: really?

    No full text
    Background: When comparing the health of two populations, it is not enough to compare the prevalence of chronic diseases. The objective of this study is therefore to propose a metric of health based on domains of functioning to determine whether the English are healthier than the Americans. Methods: We analysed representative samples aged 50 to 80 years from the 2008 wave of the Health and Retirement Study (N?=?10?349) for the US data, and wave 4 of the English Longitudinal Study of Ageing (N?=?9405) for English counterpart data. We first calculated the age-standardized disease prevalence of diabetes, hypertension, all heart diseases, stroke, lung disease, cancer and obesity. Second, we developed a metric of health using Rasch analyses and the questions and measured tests common to both surveys addressing domains of human functioning. Finally, we used a linear additive model to test whether the differences in health were due to being English or American. Results: The English have better health than the Americans when population health is assessed only by prevalence of selected chronic health conditions. The English health advantage disappears almost completely, however, when health is assessed with a metric that integrates information about functioning domains. Conclusions: It is possible to construct a metric of health, based on data directly collected from individuals, in which health is operationalized as domains of functioning. Its application has the potential to tackle one of the most intractable problems in international research on health, namely the comparability of health across countries

    Robust filtering: Correlated noise and multidimensional observation

    Full text link
    In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff] pointed out that it would be natural for πt\pi_t, the solution of the stochastic filtering problem, to depend continuously on the observed data Y={Ys,s∈[0,t]}Y=\{Y_s,s\in[0,t]\}. Indeed, if the signal and the observation noise are independent one can show that, for any suitably chosen test function ff, there exists a continuous map θtf\theta^f_t, defined on the space of continuous paths C([0,t],Rd)C([0,t],\mathbb{R}^d) endowed with the uniform convergence topology such that πt(f)=θtf(Y)\pi_t(f)=\theta^f_t(Y), almost surely; see, for example, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff], Clark and Crisan [Probab. Theory Related Fields 133 (2005) 43-56], Davis [Z. Wahrsch. Verw. Gebiete 54 (1980) 125-139], Davis [Teor. Veroyatn. Primen. 27 (1982) 160-167], Kushner [Stochastics 3 (1979) 75-83]. As shown by Davis and Spathopoulos [SIAM J. Control Optim. 25 (1987) 260-278], Davis [In Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie, France 1980 505-528], [In The Oxford Handbook of Nonlinear Filtering (2011) 403-424 Oxford Univ. Press], this type of robust representation is also possible when the signal and the observation noise are correlated, provided the observation process is scalar. For a general correlated noise and multidimensional observations such a representation does not exist. By using the theory of rough paths we provide a solution to this deficiency: the observation process YY is "lifted" to the process Y\mathbf{Y} that consists of YY and its corresponding L\'{e}vy area process, and we show that there exists a continuous map θtf\theta_t^f, defined on a suitably chosen space of H\"{o}lder continuous paths such that πt(f)=θtf(Y)\pi_t(f)=\theta_t^f(\mathbf{Y}), almost surely.Comment: Published in at http://dx.doi.org/10.1214/12-AAP896 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Making Weak Memory Models Fair

    Get PDF

    Force-clamp analysis techniques reveal stretched exponential unfolding kinetics in ubiquitin

    Get PDF
    Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as a function of the stretching force, point mutations and solvent conditions. The statistics of these times reveal whether the protein domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the probability distribution from which they originate. It is therefore important to use robust statistical tests to decipher the correct theoretical model underlying the process. Here we develop multiple techniques to compare the well-established experimental data set on ubiquitin with existing theoretical models as a case study. We show that robustness against filtering, agreement with a maximum likelihood function that takes into account experimental artifacts, the Kuiper statistic test and alignment with synthetic data all identify the Weibull or stretched exponential distribution as the best fitting model. Our results are inconsistent with recently proposed models of Gaussian disorder in the energy landscape or noise in the applied force as explanations for the observed non-exponential kinetics. Since the physical model in the fit affects the characteristic unfolding time, these results have important implications on our understanding of the biological function of proteins

    Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus)

    Get PDF
    The Eastern, migratory population of monarch butterflies (Danaus plexippus), an iconic North American insect, has declined by ~80% over the last decade. The monarch’s multi-generational migration between overwintering grounds in central Mexico and the summer breeding grounds in the northern U.S. and southern Canada is celebrated in all three countries and creates shared management responsibilities across North America. Here we present a novel Bayesian multivariate auto-regressive state-space model to assess quasi-extinction risk and aid in the establishment of a target population size for monarch conservation planning. We find that, given a range of plausible quasi-extinction thresholds, the population has a substantial probability of quasi-extinction, from 11–57% over 20 years, although uncertainty in these estimates is large. Exceptionally high population stochasticity, declining numbers, and a small current population size act in concert to drive this risk. An approximately 5-fold increase of the monarch population size (relative to the winter of 2014–15) is necessary to halve the current risk of quasi-extinction across all thresholds considered. Conserving the monarch migration thus requires active management to reverse population declines, and the establishment of an ambitious target population size goal to buffer against future environmentally driven variability

    Estimating arthropod survival probability from field counts: a case study with monarch butterflies

    Get PDF
    Survival probability is fundamental for understanding population dynamics. Methods for estimating survival probability from field data typically require marking individuals, but marking methods are not possible for arthropod species that molt their exoskeleton between life stages. We developed a novel Bayesian state‐space model to estimate arthropod larval survival probability from stage‐structured count data. We performed simulation studies to evaluate estimation bias due to detection probability, individual variation in stage duration, and study design (sampling frequency and sample size). Estimation of cumulative survival probability from oviposition to pupation was robust to potential sources of bias. Our simulations also provide guidance for designing field studies with minimal bias. We applied the model to the monarch butterfly (Danaus plexippus), a declining species in North America for which conservation programs are being implemented. We estimated cumulative survival from egg to pupation from monarch counts conducted at 18 field sites in three landcover types in Iowa, USA, and Ontario, Canada: road right‐of‐ways, natural habitats (gardens and restored meadows), and agricultural field borders. Mean predicted survival probability across all landcover types was 0.014 (95% CI: 0.004–0.024), four times lower than previously published estimates using an ad hoc estimator. Estimated survival probability ranged from 0.002 (95% CI: 7.0E−7 to 0.034) to 0.058 (95% CI: 0.013–0.113) at individual sites. Among landcover types, agricultural field borders in Ontario had the highest estimated survival probability (0.025 with 95% CI: 0.008–0.043) and natural areas had the lowest estimated survival probability (0.008 with 95% CI: 0.009–0.024). Monarch production was estimated as adults produced per milkweed stem by multiplying survival probabilities by eggs per milkweed at these sites. Monarch production ranged from 1.0 (standard deviation [SD] = 0.68) adult in Ontario natural areas in 2016 to 29.0 (SD = 10.42) adults in Ontario agricultural borders in 2015 per 6809 milkweed stems. Survival estimates are critical to monarch population modeling and habitat restoration efforts. Our model is a significant advance in estimating survival probability for monarch butterflies and can be readily adapted to other arthropod species with stage‐structured life histories

    Mechanical Strength of 17 134 Model Proteins and Cysteine Slipknots

    Get PDF
    A new theoretical survey of proteins' resistance to constant speed stretching is performed for a set of 17 134 proteins as described by a structure-based model. The proteins selected have no gaps in their structure determination and consist of no more than 250 amino acids. Our previous studies have dealt with 7510 proteins of no more than 150 amino acids. The proteins are ranked according to the strength of the resistance. Most of the predicted top-strength proteins have not yet been studied experimentally. Architectures and folds which are likely to yield large forces are identified. New types of potent force clamps are discovered. They involve disulphide bridges and, in particular, cysteine slipknots. An effective energy parameter of the model is estimated by comparing the theoretical data on characteristic forces to the corresponding experimental values combined with an extrapolation of the theoretical data to the experimental pulling speeds. These studies provide guidance for future experiments on single molecule manipulation and should lead to selection of proteins for applications. A new class of proteins, involving cystein slipknots, is identified as one that is expected to lead to the strongest force clamps known. This class is characterized through molecular dynamics simulations.Comment: 40 pages, 13 PostScript figure
    • …
    corecore